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(Bottom) on alfalfa and
potato fields, respectively.

A small UAS was used to
collect images every 2
seconds and conducted image
processing to compute NDVI.

Recharge Variability [(S1-S4) w.r.t. (S0O)] in
Changing Climate (X1000 acre-feet per month)

Discharge from ESPA

River Gains = spring flow to Snake River.
Pumpage = water pumped from ground for irrigation.
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evapotranspiration during
growing seasons,
consequently this will be a
promising tool to advance
drought monitoring and
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Federal regulation and policy:

— Part 107: As of June 21, 2016, Federal Aviation Administration (FAA) released the new rules for non-hobbyist small unmanned aircraft (UAS)
operations. The existing exemption, such as a Certificate of Waiver (COA) or Authorization under Section 333 exemption, is valid until it expires. Thus,
the current COA holder can continue to fly but a remote pilot certificate is required if he/she wants to fly under the new Part 107 regulations.

— Controlled airspace: Regardless of your exemption, all UAS operators must get permission from FAA air traffic control by submitting applications at
http://www.faa.gov/uas, as of August 29, 2016.

Advancing drought monitoring using UAS:

— It appears that the existing drought indices are limited to represent drought conditions at local levels. Current UAS technology is amazingly advanced in
the sense that it can illustrate vegetation greenness in few inches per pixel in spatial resolution. It implies that you can detect insect activities based on
drone images almost real-time basis. A remote sensing technology, such as satellite imagery, is still convincing to monitor drought at large coverage, but
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In the near future.
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