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ABSTRACT: Mid-range streamflow predictions are extremely important for managing water resources. The abil-
ity to provide mid-range (three to six months) streamflow forecasts enables considerable improvements in water
resources system operations. The skill and economic value of such forecasts are of great interest. In this
research, output from a general circulation model (GCM) is used to generate hydrologic input for mid-range
streamflow forecasts. Statistical procedures including: (1) transformation, (2) correction, (3) observation of
ensemble average, (4) improvement of forecast, and (5) forecast skill test are conducted to minimize the error
associated with different spatial resolution between the large-scale GCM and the finer-scale hydrologic model
and to improve forecast skills. The accuracy of a streamflow forecast generated using a hydrologic model forced
with GCM output for the basin was evaluated by forecast skill scores associated with the set of streamflow fore-
cast values in a categorical forecast. Despite the generally low forecast skill score exhibited by the climate fore-
casting approach, precipitation forecast skill clearly improves when a conditional forecast is performed during
the East Asia summer monsoon, June through August.
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INTRODUCTION

The water resources of Korea, China, and Japan
depend largely on the summer monsoon season precip-
itation. Precipitation during this period is strongly
influenced by the East Asian monsoon system (Ho and
Kang, 1988; Kim et al., 1998). Summer monsoons are
caused by the physical and thermal interactions of the
land and ocean. Since the land is more sensitive than
the ocean to temperature during summer, it heats and

cools more quickly. This results in the formation of low
pressure at low levels, and is driven by the existence of
lower atmospheric inflow from the ocean. This mecha-
nism increases humidity and precipitation. Winter
monsoons are characterized by the inverse of these
conditions (Robinson, 1976; Lighthill et al., 1981).

Heavy rains and humid weather occur during the
summer monsoon. Winds arise from a southwesterly
direction in Central and East Asia. More than 60% of
the annual precipitation occurs during this period.
Intense rain accompanying the tropical cyclones in
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the region contributes to flooding and can have signif-
icant impacts (e.g., dam failures, loss of human life,
loss of livestock, and other economic damages). These
characteristics of summer monsoons underline the
importance of forecasts in mitigating damages associ-
ated with uncertain hydrologic events. Such complex
climate characteristics, however, make it difficult to
forecast the weather (precipitation and temperature)
and streamflows several months into the future. This
is also due to the weak relationship between the
regional climate and the global physical hydrologic
cycle, which is associated with the highly unstable
climate variability in the northern hemisphere (lati-
tude: N25-N45). Nonetheless, there has been strong
interest in the quality of streamflow forecasts and
their impacts on water resource operations.

From a hydrologic perspective, monsoon systems in
East Asia impact the transition from periods of high to
low seasonal flows depending on the magnitude of
rainfall during the summer season. Accurate stream-
flow forecasts (particularly at lead times of three to six
months), therefore, can provide valuable information
to water managers. Such forecasts allow managers to
provide extra flood control volumes when high flows
are expected, to store more water at the beginning of a
drawdown season when less than average flows are
expected, and to encourage wise water use during
unseasonably dry summer months. Mid-range fore-
casts, in particular, are valuable to water resource
managers interested in supplying affordable water,
sustaining the continuum of system reliability, and
increasing annual water system revenues. The advan-
tage of a forecast system is that responses can be initi-
ated far in advance of the most significant impacts
caused by hydrologic events, thereby minimizing the
damages associated with them. Furthermore, these
forecast systems can both inform decision makers,
resource managers, and stakeholders and support
decision making based on scientific facts and forecasts,
rather than past operations or normal conditions.

Recently, general circulation models (GCMs) have
been used for regional climate simulation and ⁄ or local
scale forecasts, but substantial systematic precipita-
tion and temperature biases preclude their direct
use in hydrologic forecast modeling framework as
forcing (Leung et al., 1999; Roads et al., 1999; Wood
et al., 2002). Because the spatial resolution of
these products is relatively coarse, it is necessary to
apply adjustment procedures to a specific regional
watershed to minimize the error associated with a
coarser grid. Leung et al. (1999) proposed a simple
correction scheme that retains the basic statistics
(e.g., mean and standard deviation) between the
regional climate model (RCM) and the variable infil-
tration capacity (VIC) model, which is a macroscale
hydrology model for water and energy balance (Liang

et al., 1994). This scheme uses an RCM-simulated
monthly mean precipitation and surface temperature
that is ‘‘corrected’’ with observed historical data.
Hence, the new monthly mean is bounded by the
range of the historic climate records. Alternatively,
Wood et al. (2002) suggests a relatively simple
approach to creating linkage between forecast out-
puts from GCMs and macroscale hydrologic models
by using quantile-quantile mapping techniques on
empirical distributions. First, the retrospective fore-
casts are compared with historic meteorological data
and monthly cumulative distribution curves are gen-
erated to identify the bias. Next, the two cumulative
distribution curves are used to transform GCM out-
put into VIC input at given grid cells.

These two simple methods have been used to down-
scale a coarse climate model to a finer regional hydro-
logic model in both the Pacific Northwest and Eastern
United States (U.S.) (Wood et al., 2002). However,
additional research is needed to improve the predict-
ability of regional climate forecasts in terms of meteo-
rological anomalies associated with precipitation and
temperature forecast products. These products can be
used, in turn, to forecast important hydrologic events.

This paper addresses the following issues: how to
best develop seasonal streamflow forecasts using a cli-
mate model in the East Asian countries and then how
to evaluate their quality in a hydrologic forecast frame-
work. The outcome of the research and its statistical
methodology can be used as a basis for similar forecast-
ing efforts in diverse disciplines such as meteorology,
agriculture, hydrology, and natural resources. This
has potential to both maximize operational perfor-
mance as well as provide economic benefits.

The paper is organized as follows: a brief descrip-
tion of the study area is first presented to justify the
necessity of streamflow forecasts to better manage
water resources in the region, followed by a detailed
description of the models used in this study. The
methodology is then described, including the statisti-
cal correction and evaluation techniques. Lastly, the
quality of hydrologic forecasts associated with the
climate forecasts is evaluated during the summer
monsoon period, concluding with discussion of the
results and future work.

MATERIALS AND METHODS

Study Area

The Geum River Basin is one of the largest water-
sheds in Korea. The Geum River drains some
9,810 km2 and has a main stem length of 396 km
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(Figure 1). The Geum River flows from south to north.
Daechong Dam, which creates a reservoir of approxi-
mately 1,500 million m3, provides water to several
major cities with a combined population of approxi-
mately 3 million people. Upstream of Daechong Dam
is Yongdam Dam (completed in 2001), which creates a
reservoir of approximately 815 million m3. Both dams
play a key role in flood control, hydropower, and muni-
cipal and irrigation water in the region. The Geum
River Basin, however, has experienced severe water
conflicts that have led to considerable debate over
what values should be established for environmental
flows for both dams. In addition, uncertainty about
future water demand in the face of rapid population
growth in the region has fueled debate concerning
water resources management.

Recent droughts, as well as flood concerns, high-
light the necessity of streamflow forecasts to mitigate
impacts caused by uncertain hydrologic events, and
to provide useful insights for system managers in
their decision-making processes. In this study, May
was determined to be the appropriate month to pre-
dict hydrologic events (drought ⁄ flood) associated with
the typical summer monsoon season (June-August).
Earlier forecasts were found to be premature and
forecasts later than this month were found to be too
late to be effective.

Models. The Korea Meteorological Administra-
tion-Seoul National University (KMA-SNU) model
and the Hydrologic Simulation Program-FORTRAN

(HSPF) (EPA HSPF, 1970) are utilized as a climate
model and a hydrologic model, respectively. The
KMA-SNU has implemented a dynamic climate
model based on global spectral models (Kim et al.,
1998). The KMA-SNU model includes a seasonal pre-
diction system as part of the Seasonal Prediction
Model Intercomparison Project 2 (SMIP2), which is
organized by the Climate Variability and Predictabil-
ity (CLIVAR) Working Group on Seasonal to Interan-
nual Prediction (CLIVAR ⁄ WGSIP: http://www.clivar.
org). SMIP2, the next generation of the SMIP fore-
casting system, extends the lead time of the forecast
to two of the four seasons (winter, spring, summer,
and autumn) and has analyzed recent climate retro-
spectively from 1980 to 2002. Each participating
institute executes the model using two datasets
(including an observed dataset) as well as its bound-
ary conditions. This helps ensure that the monthly
averages are preserved when monthly values are dis-
aggregated to daily values. The model provides 10
ensemble members for seven months with observed
initial conditions in February, May, August, and
November for spring, summer, fall, and winter,
respectively (Kang et al., 2004).

FIGURE 1. Map of Water System in the Geum River Basin.
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As evidence of the successful performance of the
KMA-SNU model, Kim et al. (1998) showed that the
model is capable of simulating the climatology and
interannual variations of global precipitation and
circulation statistics reasonably well. The model’s
overall performance in simulating the climatological
variations of summer monsoon statistics over the
Asian-Western Pacific region is well-documented
(Kang et al., 2002). All models produced excessive rain-
fall in the Indian monsoon region. A second group of
models, including KMA-SNU, simulated more precipi-
tation in the subtropical western Pacific, but their rain
band was somewhat shifted toward the north, which
strongly affects the rainy season in East Asian coun-
tries (Kang et al., 1999). Furthermore, Kang et al.
(2002) emphasized that even if the northward climato-
logically intraseasonal oscillation components are sim-
ulated, their phases are shifted by about a month lead
time so that the models indicate an early onset of the
East Asian summer monsoon. This valuable informa-
tion can be utilized to improve streamflow forecasts as
well as system operation in this study.

The hydrologic model used in this research is a
combination of the Better Assessment Science
Integrating Point and Nonpoint Sources (BASINS)
3.0 (EPA BASINS, 2001) and the HSPF model. The
main components of BASINS are: (1) a data manage-
ment tool that allows the user to get nationally
archived hydrologic and meteorological databases;
(2) watershed delineation tools; (3) utilities for classi-
fying the digital elevation maps, land use, soils, and
water quality data; and (4) watershed characteriza-
tion reports that allow the user to present the output
of information on selected watersheds (http://www.
epa.gov/waterscience/basins/basinsv3.htm).

The BASINS model provides a Digital Elevation
Model (taken to be 6.5 km resolution in this study) as
a primary dataset for HSPF. Each sub-basin is simu-
lated using HSPF’s pervious land segments (Forest,
Agricultural, and Urban Built-up), impervious land
segments (Urban Built-up), and streams or mixed res-
ervoir segments (RCHRES). HSPF employs several
storage zones to represent the storage processes that
interact and occur simultaneously on the land surface
and in the soil columns. Each sub-basin consists of at
least two soil layers, including an upper-zone soil layer
and a lower-zone soil layer. Raindrops move to existing
storage and leverage the water level up for infiltration
and runoff processes. Redundant soil moisture in the
upper storage can infiltrate to the lower storage and
groundwater storage, and may be routed as runoff.
The upper-zone soil layer responds quickly to storm
events, while the lower-zone soil layer controls inter-
flow and ground base flow. The RCHRES simulates
the flow of water in the tributary that drains each sub-
watershed. To create a forecast, meteorological data

for the three years preceding the forecast is run
through the model to capture the initial conditions.

Model calibration procedures are performed as fol-
lows: the annual water balance is maintained by
adjusting evaporation data when necessary, then
monthly water balances are evaluated by changing
model parameters related to interflow and ground
water. The generated hydrologic simulations, using
observed station data (precipitation and maximum
and minimum temperature) are used to determine
forecast skill (described later). This process indicates
the sensitivity of the forecast to the meteorological
input rather than possible errors in the hydrologic
model itself (Clark and Hay, 2004).

Data

The KMA-SNU model provides three-month predic-
tions of temperature and precipitation. These fore-
casts are made with a model that uses a spatial
domain of 2.5 degrees and a one-day time-step. The
KMA-SNU also provides six different ‘‘hindcasts’’ of
the GCM for each year from 1980 to 2002. For each
year, six simulations are made with different initial
conditions. For instance, the three-month forecast
runs for 2004 are made from the December 2003
observed atmospheric initial states and are derived
from six different initial conditions for every month.
Hindcast runs are basically ‘‘retrospective’’ Atmo-
spheric General Circulation Model (AGCM) simula-
tions that are forced with the global observed sea
surface temperatures (SSTs). These hindcasts repre-
sent the forecasts that would have been made had
the forecasting system been in place.

The hindcasts can be used to compare the results
of forecasts and historic weather conditions. Both the
hindcasts and the forecasts are made for a three-
month period from June to August (typical Asian
summer monsoon). For application to a specific
watershed, the KMA-SNU forecasts must be system-
atically corrected to minimize the error associated
with a coarse grid. To be used in a hydrology model,
the corrected forecasted data must be spatially dis-
tributed throughout the basin.

For weather station data, this study uses daily pre-
cipitation and maximum and minimum temperature
data from a network of more than 57 KMA climate
observing stations across South Korea. These data
were downloaded from the KMA meteorological data-
base. Records at most of these stations began in 1963
and are continuous to the present. Only stations that
are well maintained and have long (and essentially
continuous) records from 1963 to 2001 are used for
evaluating the accuracy of the KMA-SNU forecasts.
For hydrologic modeling purposes, only one station,
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Geumsan weather station (KMA 238), is used. The
Geumsan station is located within the basin and has
a long, continuous record (Figure 1).

Bias Correction

As a first step in evaluating streamflow forecasts
associated with the KMA-SNU model, the systematic
biases in the model’s forecasts of precipitation and
temperature are examined with five distinct proce-
dures: (1) transformation, (2) statistical correction, (3)
observation of ensemble average, (4) improvement
of forecast, and (5) streamflow forecast skill test.
Figure 2 illustrates the procedure for assessment of
streamflow forecast measurements associated with
the KMA-SNU climate forecast. A statistical correc-
tion procedure is employed to minimize the spatial

and temporal differences between the two models
(the climate model and the local hydrology model).
This process is conducted in a probability framework
using the normal density function. Then, an ensemble
average forecast is produced. Potential forecast
improvement is determined based on the correspon-
dence between the observed conditional mean and
the conditional forecast (Murphy, 1993). These mea-
sures classify the forecast ⁄ observation pairs into
groups according to the value of the forecast variable
and characterize the conditional distributions of the
observations given in the forecasts. Finally, a forecast
skill test is used to display the relative accuracy of a
set of forecasts corresponding to an observed value,
with respect to a set of reference forecasts (forecasts
in random space in this case, e.g., randomly selected
values from a normal density function in a given
month). Forecast skill is usually measured using a

FIGURE 2. Methodology for Assessment of Streamflow Forecasts Associated with KMA-SNU Climate Forecast.
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prescribed skill score method such as the Heidke
Skill Score (HSS) or the Kuipers Skill Score (KSS)
(Heidke, 1926; Hanssen and Kuipers, 1965). For this
particular application, however, a root mean square
error (RMSE) method is also used as an additional
measure of the forecast performance.

Transformation. A common practice in hydrology
is to transform the forecast and observed values into
normally distributed random variables by taking log-
arithms or some other Box-Cox transformation (Box
and Cox, 1964; Stedinger, 1980; Shapiro, 1990). One
reason for the wide application of the normal distri-
bution is that many climatic variables (such as the
average monthly temperature) and hydrologic vari-
ables (such as the average monthly streamflow) are
normally distributed or approximately normally
distributed. Although the data are approximately
normally distributed, they appear to preserve the
normality through statistical goodness-of-fit tests
such as histograms, probability plots, and quantile-
quantile plots, as well as through classic normality
tests (e.g., regression, chi-square, and moment tests)
(Shapiro, 1990). Another reason for transforming
data to a normal distribution is that other statistical
tests can be derived from the normal distribution.
The normal distribution can be easily related to many
other theoretical distribution functions (Log-normal,
Poisson, Binomial, and Gamma). Figure 3 presents
the average January precipitation at the Geumsan
weather station, and demonstrates the results of a
typical transformation.

Statistical Correction. To apply the coarse
gridded climate forecasts to local climatology, the
regional biases and the spatial and temporal discrep-
ancies between the climate model and the historical
data must be addressed (Clark and Hay, 2004).
Since the watersheds in this study are significantly
smaller than the spatial grid of the KMA-SNU,
these forecasts must be spatially adjusted. In addi-
tion, the KMA-SNU forecasts and the hydrology
model operate at different time steps; therefore, the
forecasts must also be temporally disaggregated.
Note that for the temporal adjustment step of this
research, the additive and multiplicative techniques
are utilized for temperature and precipitation,
respectively, as described by Wood et al. (2002).
Many global and local statistical downscaling tech-
niques such as regression (Enke and Spekat, 1997),
canonical correlation (Karl, 1990), neural networks
(Wilby and Wigley, 1997), analogues (Zorita and
Storch, 1999), and clustering (Gutierrez et al., 2004)
have also been used as methods for incorporating
global climate information into local meteorological
and hydrological applications. However, the proposed
method in this study is relatively simple and
straightforward.

Statistical correction is performed for each weather
station, treating each point individually, that is, the
monthly climatologic distributions (precipitation
and temperature) are independent of surrounding
stations. For example, bias correcting a monthly
retrospective forecast for June-August requires two
individual normal distribution functions. The 144

FIGURE 3. January Average Precipitation Data for Geumsan Weather Station in Geum River Basin, 1973-2003,
(a) Before and (b) After Data Transformation. The solid line represents a normal curve fitted to the data.
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values (24 years and 6 ensembles) of hindcasts are
transformed to a normal distribution, and the 30
values of historic data are separately transformed to
normal distribution. Each month has different means
and standard deviations.

The first step of statistical correction compares the
retrospective (hindcasts) to historic meteorological
data. The two probability density functions (PDFs) –
transformed normal density of hindcasts and historic
data – are used to transform the KMA-SNU forecasts
into appropriate values for the specific weather sta-
tion. The transformations imply that probability
mapping is the most appropriate way to relate the
KMA-SNU forecast to the ‘‘statistically corrected fore-
cast.’’ Figure 4 represents the statistical correction
procedure for monthly precipitation, which relates
one KMA-SNU grid point with one weather station.
The probability of the initial retrospective forecast of
average precipitation for a given month is the proba-
bility P(y) along the retrospective density function
f(y). This P(y) relates to P(x), which produces a ‘‘sta-
tistically corrected’’ forecast, P(y*). For instance, the
hindcasted KMA-SNU indicates average monthly pre-
cipitation of 0.4 mm (‘‘Start point’’ in Figure 4). This
relates to about 16% probability in normal domain x,
which produces an observed value (0.18 mm) having
the same probability. Finally, the initial value of the
hindcasted value (0.4 mm) derived from the climate
forecast model is replaced by an observed local value
(0.18 mm). This implies that the forecast value is sta-
tistically corrected by 55%. The double-sided direction
of the arrow in Figure 4 indicates the value of the
statistical correction. Figure 5 demonstrates a conve-
nient means of summarizing the distribution of the
hindcasts, observations, and statistically corrected

hindcasts. For the Geumsan precipitation data, the
box plots for the hindcasts in June indicate symmetri-
cal distributions.

Obvious differences between the median of retro-
spective f(y) and observed precipitation f(x) suggest
that the hindcasts may be biased. On the contrary,
the central tendency and variability between statisti-
cally corrected f(y*) and observed data f(x) appear to
preserve the same statistical properties such as the
mean and variance. In particular, the upper and
lower whiskers are approximately equal in length
and the means of the boxes are approximately the
same size. Large changes in the median value
between the ‘‘before’’ statistical correction, f(y), and
‘‘after’’ statistical correction, f(y*), of the hindcast
data suggest that the retrospective forecasts are

FIGURE 4. Statistical Correction Procedure of Precipitation Data (mm) for KMA-SNU Forecast (y) to Regional Observed Data (x).

FIGURE 5. Box Plots of Marginal Distribution of June
Precipitation Observations f(x) and Forecasts f(y*) at

Geumsan Weather Station, Respectively. Note: f(y) is before
statistical correction and f(y*) is after statistical correction.
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biased. The observed precipitation distribution shows
somewhat smaller variability than that exhibited by
the retrospective precipitation forecasts, as indicated
by the outliers of the boxes and the differences
between the 0.90th and 0.10th quantile values.

Ensemble Average Forecast. Another valuable
aspect of the forecast is improved accuracy, which is
achieved by allowing a fuller range of estimates of
the initial state of the atmosphere. Wilks (1995)
noted that the ensemble average can be expressed as
the atmosphere state corresponding to the center of
the ensemble in phase space for some time in the
future, and approximates the center of the stochastic-
dynamic probability distribution at that future time.
This makes the ensemble average forecast a good
indication of the central tendency for future possible
climate characteristics as well as in dynamic random
space, making it another useful tool in determining
the quality of the forecast (Wilks, 1995). The ensem-
ble average forecast is obtained simply by averaging
the ensemble members for the forecast period.
Figure 6 presents the forecast distribution in each
month. For example, the June forecast (Figure 6a)
exhibits a tendency toward under forecasting precipi-
tation during the period from the mid to late 1990s.
Overall, average forecast is poor until 1999. On the
other hand, during this period, the hindcasts still
appear to be relatively biased over the entire range of
forecast values.

Improvement of the KMA-SNU Forecast.
Because the previous forecasts proved to be of poor
quality despite statistical correction, other approaches
were explored. A general framework for a forecast can
be based on the joint (probability) distribution of
forecasts and observations and on the conditional and
marginal distributions (Murphy et al., 1989). Since the
normalized observed distribution f(X) and forecast
ensemble average distribution f(Y**) are fairly sym-
metrical, it is reasonable to model their joint behavior
as a bivariate normal distribution. A very useful
property of the bivariate normal distribution is that
the conditional distribution of one of the variables,
given any particular value of the other, is normally
distributed. If the average ensemble forecasts and
observations are denoted by Y and X, respectively,
then the joint distribution can be denoted by f(Y, X).
The joint distribution f(Y, X) specifies the relative fre-
quency of the occurrence of a particular combination
of values of retrospective and observed data. Two nor-
mal distribution functions f(Y) and f(X) are already
calculated using the series of statistical transforma-
tion and statistical correction procedures described
previously. Based on the conditional distribution the-
orem, f(Y, X) = f (Y|X)f(X) or f(Y, X) = f(X|Y)f(Y),
the joint distribution is the conditional distribution of
Y at a given X multiplied by marginal distribution X.
The value indicates a function proportional to a
conditional distribution of X given a particular value
of Y. The parameters for these conditional normal

FIGURE 6. Comparison of the Precipitation Forecast for Three Different Months over Historic Records:
(a) June, (b) July, and (c) August. Note: square dots indicate ensemble average of monthly precipitation.
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distributions can be calculated from the five para-
meters of the bivariate normal distribution (see
Appendix).

Forecast Skill Scores. The streamflow forecast
is first analyzed for skill using HSS and KSS, which
are widely used for forecast verification (Wilks,
1995). The Heidke score measures the accuracy of
the forecast relative to the accuracy of random
chance. This score calculates the fraction of correct
forecasts after eliminating forecasts that would be
correct because of purely random chance. This repre-
sentation can also be interpreted as a percentage
improvement over random sampling. A typical score
ranges from )1.0 to 1.0. A value of 1 is considered a
perfect forecast while a value of 0 indicates that the
forecast has the same skill that would be expected
by random sampling. A negative value implies that
the forecast performs worse than random chance.
The difference between HSS and KSS is that, unlike
the HSS, the KSS formulation is based on an
unbiased random sampling. Equations of HSS and
KSS are available in the Appendix (see Equations
A5 and A6).

To apply HSS and KSS to Geum River streamflow
forecasts, the probability distributions created by the
set of forecast values are converted into a categorical
forecast. This conversion is performed by assuming a
threshold that defines a region around historic aver-
age streamflow values; this is considered the average
value region. The median forecast value is then
placed into the multi-categorical format (e.g., above
normal, normal, and below normal). The threshold is
chosen in advance, using half of a standard deviation
in the given month.

The probability space is thus divided into four
regions. Figure 7 illustrates the threshold that would

be chosen according to the mean of observed historic
data. The upper and lower dotted lines represent the
half of standard deviation above and below the mean
of the given observed month, respectively. The hit
rate in Equation (A5) is calculated as follows: if both
forecast and observation fall in the same boundary,
no matter what the boundary is (e.g., 1-1, 2-2, 3-3,
and 4-4), a hit is considered to have occurred and is
recorded; if both forecast and observation fall either
above or below the normal (e.g., 1-2, 2-1, 3-4, and 4-
3), a hit is recorded; and if both forecast and observa-
tion are adjacent to each other (e.g., 1-2, 2-1, 2-3, 3-2,
3-4, and 4-3), a hit is recorded. Based on this condi-
tion, Table 1 shows a 4-by-4 contingency table and
the associated alphabetic letter corresponding to the
hit criterion.

RESULTS

Figure 8 illustrates a bivariate normal distribution
between hindcasts of precipitation and the corre-
sponding observed precipitation for Geumsan station
for the period June 1980-August 2002. The correla-
tion of actual July precipitation to the forecast
appears to be greater than correlations for other
months. The plots in Figure 9 present normalized
data for the actual precipitation, the statistically cor-
rected precipitation, and the conditional predicted
precipitation, respectively. Overall, the result shows
that the conditional predicted precipitation is more
accurate during severe drought periods (1994-1995).
It is also possible to express the increased accuracy of
the forecast by evaluating each member of a collec-
tion of paired comparisons (observed vs. statistically
corrected hindcasts and observed vs. conditional pre-
dicted forecasts after statistical correction). The
RMSE between observed and forecasted precipitation
is presented in Figure 10. The upper portion of the
figure (above 45� linear line) represents a condition

FIGURE 7. Schematic of Determination of Threshold.

TABLE 1. Categorical Streamflow
Forecasts for Threshold Boundary.

1 2 3 4

1 A* B* C D
2 E* F* G* H
3 I J* K* L*
4 M L O* P*

*Hits satisfying threshold boundary condition, alphabets indicate
placeholders for the values in the cells when they are available.
Thus, these letters will be replaced by the values in shaded areas
in Table 3.
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in which the hindcasts are more biased than the
conditional prediction value. This result shows that
the conditional forecast diminishes the absolute
errors between hindcasts and observed data and
improves forecast performance (Table 2), and implies
that the conditional forecast technique is a better
estimation technique than direct estimation after sta-
tistical correction. It also appears that there is little
increase in skill for the June forecast, but that the
forecast skill in July and August increased signifi-
cantly (by up to 26%). However, this does not neces-
sarily mean that the July forecast becomes more
accurate than the other months, even if the forecast
performance is significantly improved. This fact is
discussed in the next section.

Figure 11 shows the distribution of hindcasts and
modeled streamflow associated with climate forecasts
during monsoon seasons (June-August) over historic
periods. The solid line (diamonds) and dotted line (tri-
angles) represent the total monthly streamflow as
modeled and forecasted, respectively. The results
show that streamflow forecasts in July do not make
good predictions for the years of hydrologic events
(e.g., 1987, 1989, and 1997) even if the precipitation
forecast is much improved through statistical correc-
tion procedures (Figure 10). This implies that the

July precipitation forecast in the climate model, in
particular, is relatively more biased than the fore-
casts for other months. In other words, July is the
most difficult month during the monsoon season to
forecast both precipitation and streamflow.

Table 3 summarizes the four streamflow type out-
comes on each forecasting occasion, respectively.
Using the HSS equation, the Heidke score for the
4-by-4 contingency table in Table 3 is computed as
follows. The hit rate (HR) is HR =

PI
i¼1 Pðyi; xiÞ =

(1 ⁄ 66) + (0 ⁄ 66) + (1 ⁄ 66) + (4 ⁄ 66) + (5 ⁄ 66) + (4 ⁄ 66) +
(5 ⁄ 66) + (3 ⁄ 66) + (9 ⁄ 66) + (10 ⁄ 66) = 0.636. The
hit rate for the random reference forecasts
(HRF) is HRF =

PI
i¼1 PðyiÞPðxiÞ = (0.015)(0.227) +

(0.227)(0.227) + (0.015)(0.212) + (0.227)(0.212)
+ (0.424)(0.212) + (0.227)(0.182) + (0.424)(0.182) +
(0.333)(0.182) + (0.424)(0.379) + (0.333)(0.379) =
0.662. Therefore, by the equation HSS, the Heidke
Skill Score = )0.07. Similarly, KSS can be computed
using the equation KSS that used an unbiased hit
rate in random space denoted as

PI
i¼1 PðxiÞ

2 =
(0.227)2 + (0.212)2 + (0.182)2 + (0.379)2 = 0.273. The
Kuiper Skill Score = (0.635-0.662) ⁄ (1-0.273) = )0.04.
The small difference between HSS and KSS implies
that the forecast is slightly biased in comparison with
unbiased random space (Wilks, 1995).

FIGURE 8. Perspective View of a Bivariate Normal Distribution for Geumsan Station in Different Months (June, July, and August).
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CONCLUSION AND FUTURE WORK

This research evaluated the quality of the KMA-
SNU forecast model and the systematic biases in the
model’s precipitation and temperature forecasts. Five
distinct procedures were used to evaluate the
forecasts, including (1) transformation, (2) statistical
correction, (3) observation of ensemble average, (4)
improvement of forecast, and (5) forecast skill test.
The results show spatial adjustment, statistical cor-
rection, and temporal disaggregating techniques are
needed to improve the forecast and contribute to
modest improvement in the forecast skill. For precipi-
tation, research results show a gain in forecast skill
when a conditional forecast is performed. Recent per-
sonal communications with KMA-SNU model devel-
opers and forecasters indicate that these results are
consistent with their experience, and that, unfortu-
nately, the forecasts being generated are not suffi-
ciently accurate to be used to support management
decisions. Although precipitation forecasts for the
month of July showed some improvement, the analy-
sis also showed low skill (HSS and KSS) in the criti-
cal months (June through August). This could be
related to the unstable regional climate and unex-
pected tropical cyclones (typhoons) created in the
western Pacific Ocean.

Additionally, the results show that if the input fore-
cast has low skills, an adjustment will rarely produce
a credible hydrologic forecast for the targeted region.

FIGURE 9. Comparisons of Normalized Monthly Average Precipitation with Observed, Hindcast, and Conditional Predicted
Precipitation for (a) June, (b) July, and (c) August. Note: square dots indicate conditional predicted precipitation.

FIGURE 10. Root Mean Square Error Between
Observed and Forecast, and Observed and Conditional

Predicted Values over Historic Data.

TABLE 2. RMSE Between Observed and Forecasted, and Observed
and Conditional Predicted Values Over Historic Data.

Month

RMSE

OBS ⁄ Conditional Prediction OBS ⁄ Hindcast

June 1.49 (4%) 1.55
July 1.39 (26%) 1.89
August 1.44 (11%) 1.62

Note: The values in parentheses represent percent increase of
RMSE between two cases.
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A potential explanation for this could be that the study
basin is too small compared with the spatial resolution
of the seasonal forecast model. Therefore, working
with basins of many different sizes, where KMA-SNU
contains at least a dozen or more grid boxes, would
help to determine if there is skill at the largest scale
and how skill deteriorates as basins get smaller.

Many climate models have been established for
more than a decade and are still evolving to enhance
their accuracy and applicability. A point of this study,
however, is to focus not only on skillful streamflow

forecasts but also on feasible approaches to measur-
ing the quality of streamflow forecasts associated
with climate forecasts. Little work has been done to
determine the most feasible approach to evaluating
the quality of streamflow forecast using skill scores
(e.g., HSS and KSS).

Finally, the authors anticipate that the proposed
methodology will provide useful insights and direc-
tions for stakeholders to improve the skill of hydro-
logic forecasts when such climate models become
available and operational with higher forecast skills.

FIGURE 11. Accuracy of the Six-Month Streamflow Hindcast (1981-2000) and Forecast (2004) for Geum River Basin,
January through June. Shown are monthly average streamflow (cms) between modeled and forecasted. Modeled

streamflows are expressed with a solid line (diamonds) and the forecasted streamflows are expressed with a dotted
line (triangles). Note that the solid and dotted constant lines are the monthly mean and ±0.5 SD, respectively.
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Also, we anticipate that the proposed methodology
could provide useful insights into improving stream-
flow forecast assessment via skill tests. This will
improve forecasting accuracy for large watersheds
(or other watersheds where an RCM is well estab-
lished) by focusing on region-specific initial and
boundary conditions that help minimize systematic
errors inherited from significantly different spatial
resolutions.

APPENDIX

Box-Cox Transformations

The Box-Cox power transformations (Box and Cox,
1964) are given by:

xðkÞ ¼ ðx
k � 1Þ
k

k 6¼ 0

xðkÞ ¼ ln ðxÞ k ¼ 0

ðA1Þ

Given a vector of data observations, x = x1, x2,
x3, …, xn, one way to select the power k, which is an
unknown parameter that allows for changing the
shape of the data distribution by the exponentiation
and effectively lowering or raising the data value, is
to use the k that maximizes the logarithm of the like-
lihood function.

fðx; kÞ ¼ � n

2
ln

Xn
i¼1

ðxiðkÞ � x ðkÞÞ2

n

 !
þ ðk� 1Þ

Xn
i¼1

lnðxiÞ;

ðA2Þ

where �xðkÞ ¼ 1
n

Pn
i¼1 xiðkÞ is the arithmetic mean of the

transformed data.

Bivariate Normal Distribution

The distributions of predicted X, given a particular
forecast value of Y and of the conditional normal den-
sity function f(X|Y = y), have parameters:

lXjY ¼ lX þ qrX
y� lY

rX

and

rXjY ¼ rX

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2

p
;

ðA3Þ

where q is the correlation coefficient.

Basic Skill Score

A basic skill score equation given by:

SSref ¼
A� Aref

Aperf � Aref
� 100%; ðA4Þ

where Aperf is the value given by a perfect forecast,
and Aref is the value given by the reference forecast
drawn from random space. If the forecast being eval-
uated (A) is equal to the perfect forecast, Aperf, the
skill score will be 100%. Similarly, if the forecast
being evaluated is essentially random, the skill score
will be 0%.

Heidke Skill Score

The general form of HSS is given by

HSS ¼

PI
i¼1

Pðyi; xiÞ �
PI
i¼1

PðyiÞPðxiÞ

1�
PI
i¼1

PðyiÞPðxiÞ
; ðA5Þ

where P(yi, xi) is the joint distribution of forecasts
and observation and P(yi) and P(xi) are the marginal
distributions of the forecast and observation, respec-
tively. The first term in the numerator,

PI
i¼1 Pðyi; xiÞ,

is the ‘‘hit rate’’ (HR), the proportion correct, or prob-
ability of detection. The second term in numeratorPI

i¼1 PðyiÞPðxiÞ is the HRF. This is the expected ‘‘yes’’
events that were correctly forecasted from random
space.

Kuipers Skill Score

The KSS is defined as

TABLE 3. Categorical Geum River Streamflow
Forecast for the Threshold Boundary.

X1 X2 X3 X4 P(Yi)

Y1 1* 0* 0 0 0.015
Y2 1* 4* 4* 6 0.227
Y3 9 5* 5* 9* 0.424
Y4 4 5 3* 10* 0.333
P(Xi) 0.227 0.212 0.182 0.379 n = 66

*Hits satisfying threshold boundary condition. Conditional on
occurrence of some form of streamflow for the Geum River basin
during monsoon season of June, July, and August 1981 through
2002. The verification data are presented as a 4-by-4 contingency
table. The sample size n is 66. Here, for example, the marginal
probability P(Y2) = (1 + 4 + 4 + 6) ⁄ 66 = 0.227.
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KSS ¼

PI
i¼1

Pðyi; xiÞ �
PI
i¼1

PðyiÞPðxiÞ

1�
PI
i¼1

PðxiÞ2
ðA6Þ

The only difference between HSS and KSS is that
the KSS formulation is based on an unbiased random
sampling by assuming that the marginal distribution
of both observed and forecast values are treated
equally in the random forecast domain (second term
in the denominator in the equation above).
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